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ABSTRACT

In a systematic way, we investigate a widely asked question: Do LLMs really un-
derstand what they say?, which relates to the more familiar term Stochastic Parrot.
To this end, we propose a summative assessment over a carefully designed physical
concept understanding task, PHYSICO. Our task alleviates the memorization issue
via the usage of grid-format inputs that abstractly describe physical phenomena.
The grids represents varying levels of understanding, from the core phenomenon,
application examples to analogies to other abstract patterns in the grid world. A
comprehensive study on our task demonstrates that: (1) state-of-the-art LLMs lag
behind humans by ∼40%; (2) the stochastic parrot phenomenon is present in LLMs,
as they fail on our grid task but can describe and recognize the same concepts well
in natural language; (3) our task challenges the LLMs due to intrinsic difficulties
rather than the unfamiliar grid format, as in-context learning and fine-tuning on
same formatted data added little to their performance. Our data is released (see
Supplementary Material in the submission) for public research.

1 INTRODUCTION

Recent years have witnessed remarkable advancements in large language models (LLMs) (Brown
et al., 2020; Achiam et al., 2023; Team et al., 2023). Thanks to the substantial model capacity and
massive training data, LLMs have achieved new state-of-the-arts on a variety of NLP tasks, even
surpassing humans on some of them (Min et al., 2023; Chang et al., 2024). Nowadays the application
of LLMs has become widespread, facilitating daily work and life, and profoundly influencing people’s
work and lifestyles (Bommasani et al., 2021; Peng et al., 2024; Demszky et al., 2023).

On the other hand, despite the great success of LLMs, many researchers argue that LLMs may not
really understand what they claim they do (Bender & Koller, 2020; Bender et al., 2021; Bommasani
et al., 2021; Mitchell & Krakauer, 2023) due to their strong memorization ability. In particular,
Bender et al. (2021) questioned whether LLMs are just Stochastic Parrots that repeat words based on
correlations without true understanding. This argument has been acknowledged by many research
papers and dozens of them even include this term in their titles.1 Unfortunately, to our best knowledge,
there are no quantitative experiments to verify the stochastic parrot phenomenon in LLMs. Existing
studies indicate that LLMs may fail on one particular challenging task (Chakrabarty et al., 2022;
Shapira et al., 2023; Hessel et al., 2023; Tong et al., 2024), but they do not demonstrate that LLMs
claimed to understand those tasks by providing a controlled and paired evidence.

This paper aims to provide quantitative evidence to validate the argument of stochastic parrot in
LLMs. To this end, from the perspective of educational and cognitive psychology, we first employ the
approach of summative assessment (Black & Wiliam, 1998a;b) to measure understanding in LLMs.

∗Equal contribution.
1
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Figure 1: Illustration of a “Stochastic Parrot” by our PHYSICO task consisting of both low-level and
high-level subtasks in parallel. For a concept Gravity, an LLM can generate its accurate description
in natural language, but cannot interpret its grid-format illustration.

Its key idea is to design various tasks that test different understanding levels regarding a specific
concept. Following the principle of Bloom’s taxonomy (Armstrong, 2010; Krathwohl, 2002), we
design tasks that reflect different levels of understanding. Consequently, we develop PHYSICO, a
task designed to assess understanding of basic physical concepts from high school such as Gravity.
Our focus on physical concepts stems from both their fundamental relevance to important topics of
world models and embodied systems (Savva et al., 2019; Duan et al., 2022; Xiang et al., 2023), and
their rich denotations and connotations that enable effective design of summative assessment tasks.

Specifically, PHYSICO includes two subtasks corresponding to two coarse levels of understanding in
Bloom’s taxonomy, as shown in Figure 1. One is the low-level understanding subtask in the natural
language format, aimed at measuring the remembering (or memorization) ability of LLMs. The other
involves the same concepts but in an abstract representation format inspired by (Chollet, 2019), which
is designed to measure the high-level understanding beyond remembering of LLMs.

We conduct comprehensive experiments on PHYSICO with representative open-source and com-
mercial LLMs.2 We obtain two key findings: 1) SOTA LLMs perform perfectly on the low-level
understanding subtask (>95% in Accuracy) but lags behind humans by a large margin (∼40% in
Accuracy) on the high-level subtask, which verifies the stochastic parrot phenomenon in LLMs. 2)
Further analysis shows that our high-level subtask challenges LLMs due to the intrinsic difficulty of
deep understanding rather than the unfamiliar format.

This paper makes the following contributions:

• We introduce a psychology-appealing approach (summative assessment) and a corresponding task
PHYSICO to measure the understanding of LLMs.

• Based on PHYSICO, we provide a quantitative experiment to successfully verify the stochastic
parrot phenomenon in LLMs.

• As a by-product, our work presents a challenging comprehension task for existing text-only and
multimodal LLMs, which establishes a substantial performance gap between humans and machines.

2 MEASURING CONCEPT UNDERSTANDING VIA SUMMATIVE ASSESSMENT

It is intrinsically challenging to measure the extent to which LLMs understand a sentence or concept.
Indeed, Bender & Koller (2020) provide a definition of "understanding" from a linguistic perspective,
but this definition depends on another abstract and unmeasurable term, “meaning”. Therefore, even
with this definition, accurately measuring "understanding" remains elusive.

2Throughout this paper, LLM refers to either standard text-only LLMs or large multimodal models for simplicity.
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We approach the measurement of whether LLMs understand a concept from an educational and
cognitive perspective, using summative assessment (Black & Wiliam, 1998a;b; Harlen & James,
1997). Summative assessment is widely used by educators as an appealing strategy to evaluate
students’ understanding and knowledge acquisition in educational and cognitive psychology. For
example, when middle school physics teachers want to know whether a student truly understands
the concept “Gravity”, they would design a series of questions specifically related to the concept of
gravity to assess comprehension, e.g., the properties like inverse square law and examples like orbital
motions. If a student struggles to answer many of these questions, the teacher may conclude that the
student does not understand the concept well or has a poor grasp of it.

We extend the idea of summative assessment to evaluating the concept understanding from humans to
machines. Formally, assume S denotes an intelligent system and C is a specific concept. To evaluate
the extent how S understands the concept C, our summative assessment includes the following two
steps:

• Task design towards C: design several concept understanding tasks, each of which consists of
several questions manually created towards understanding the concept C.

• Evaluating S: ask S to answer the questions from the tasks and calculate its accuracy.

Requirements for Validity The success (validity) of the proposed evaluation approach highly
depends on the task design (Black & Wiliam, 1998a;b). For example, if the questions are too easy,
even a weak system could answer them correctly. This leads to an overestimation of the system’s
understanding capabilities, making the assessment ineffective. To ensure good validity, we adhere to
the principles outlined in summative assessment (Black & Wiliam, 1998a;b) for task design:

• Alignment with evaluating objectives: the questions should be related to the targeted concept, and
should measure the specific knowledge about the targeted concept.

• Different difficulty levels: the questions should be with different difficulty levels from easy to
difficult level, to ensure that the evaluation results have distinctiveness for different systems.

• Variety: the questions should reflect various understanding aspects of the targeted concept; address-
ing both its denotation and connotation.

• Simplicity: while not mandatory, a simpler benchmark for humans can more effectively highlight
the issue faced by current models, i.e., the stochastic parrot effect in LLMs.

3 TASK DESIGN AND DATASET CONSTRUCTION

3.1 TASK DESIGN PRINCIPLE

We borrow the idea of Bloom’s taxonomy (Krathwohl, 2002; Armstrong, 2010) from education
research to fulfill the requirements for task design in Section 2, so as to ensure the assessment validity.
Bloom’s taxonomy offers an ideal principle to these requirements with an ordering of six cognitive
skills (from low to high level) for knowledge understanding: Remembering, Understanding, Applying,
Analyzing, Evaluating and Creating.

Generally, it is nontrivial to strictly follow this principle since there is no clear boundary among the
last four skills of understanding. As a result, we group the last four high-level skills into one and
consider the following two levels of understanding:

• Low-level Understanding: covering the two lowest-level skills in Bloom’s taxonomy, i.e., retrieving
relevant knowledge from long-term memory and rephrasing in one’s own words.

• High-level Understanding: covering the aspects for understanding the knowledge beyond memo-
rization. As shown by the examples in Section 3.2.2, our tasks directly correspond to a spectrum
from the understanding level of applying to the level of analyzing in Bloom’s taxonomy, e.g.,
applying the knowledge to explain a physical phenomenon, analyzing a concrete property of a
concept in a generalized and abstract manner,3.

Based on these two levels, we design the following PHYSICO task for summative assessment.

3For example, the flow of electric current can be abstracted as moving from high potential to low potential.
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3.2 OUR PHYSICO TASK

PHYSICO is essentially a physical concept understanding task, which primarily targets on 52 physical
concepts or phenomena: e.g., gravity, light reflection, acceleration, buoyancy, inertia, etc (see
Appendix A for the full list). Our focus on physical concepts is motivated by two main reasons: 1)
understanding physical concepts is critical for intelligent systems to interact with the world, which
is ultimate goal of embodied AI (Savva et al., 2019; Duan et al., 2022; Xiang et al., 2023); 2)
designing tasks centered around physical concepts allows us to more easily control different levels of
understanding and ensure the diversity of each concept.

For each physical concept, PHYSICO involves both low-level understanding subtasks and high-level
subtasks, following our task design principles.

3.2.1 LOW-LEVEL UNDERSTANDING SUBTASKS

Physical Concept Selection (text) First, to evaluate whether an LLM possesses the knowledge of
our included concepts, we design a task to recognize a concept from its corresponding Wikipedia defi-
nition. Specifically, we manually masked the synonyms of the concept with placeholder [PHENOMENON].
Meanwhile, highly relevant entities were masked as [MASK] to alleviate shortcuts. For example, in
the definition of Gravity, the terms “gravity” and “gravitation” were masked as [PHENOMENON], while
“Isaac Newton” was masked as [MASK]. Details can be found in Appendix B. We then present the
LLMs with the same four choices as in our following high-level subtasks.

Physical Concept Selection (visual) Second, we evaluate if the LLMs can recognize our concepts
represented with real-life pictures. To this end, we query our concepts on Google image search,
and select the images that reflect the same core properties and examples annotated in our following
high-level tasks. This results in 100 examples. We construct the same four-choice instances as above.

Physical Concept Generation Finally, we directly ask the LLMs to generate the description of
a concept with its core properties and representative examples. For instance, the concept Gravity
is described as “a force that pulls objects with mass towards each other”, followed by the example
“an apple falls to the ground” as shown in Figure 1. We then evaluate the performance of LLMs by
measuring the quality of the description and its coverage of knowledge required by our PHYSICO
and we employ both automatic and human metrics as presented in Section 5.2. This provides a
quantitative measure of the knowledge LLMs can recall in the context of our assessment.

3.2.2 HIGH-LEVEL UNDERSTANDING SUBTASKS

The low-level subtasks are depicted in natural language thus are likely to be remembered by the
LLMs due to their extensive training data. To assess whether the LLMs possess a deep understanding
of the knowledge, we require the subtasks that can 1) represent the high-level understanding skills; 2)
avoid the effects of memorization.

The Abstraction and Reasoning Corpus (ARC) (Chollet, 2019) provides a compelling way by using
grids (or matrices) instead of texts to represent a concept. While the LLMs have seen matrices during
pre-training, the data is less likely to be correlated to physical concepts. We hence adopt this idea to
represent our subtask as abstract representations in the grid world that associate to the key properties
of a physical concept.

The PHYSICO-CORE Set Our first subtask aims to cover the core properties or most representative
examples/applications of the assessed concepts. To ensure our set remains generally comprehensible
to humans, we maintain a high school-level difficulty and selected 52 common physical concepts
within the curriculum. To enhance the diversity and richness, five annotators have labeled multiple
core aspects of each concept. For example, the annotated core aspects of Gravity include attraction
between two bodies, motion on an inclined plane, objects falling to grounds and orbital motions.

For each aspect of a concept, the annotator is asked to draw several pairs of abstract grid represen-
tations. The aspect of the concept is guaranteed to be illustrated by the pair, such that it explains
the transformation from the input to the output. For example, Figure 1 forms a direct abstract
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RQ1: Do LLMs possess the necessary knowledge in 
natural language format to succeed in low-level tasks?

RQ2: Can humans perform well on the high-level tasks?

RQ3: Can LLMs perform well on the high-level tasks 
using matrix-format input representations?

RQ4: Can LLMs perform well on the high-level tasks 
using visual input representations?

RQ5: Are our tasks challenging for LLMs primarily due 
to their unfamiliarity with grid representations?

RQ6: Can LLMs easily benefit from supervised training 
on labeled data?

Hypothesis1: SOTA LLMs 
exhibit the Stochastic Parrot 
Phenomenon

Hypothesis2: SOTA LLMs lag 
behind humans on our high-
level tasks by a large margin

Hypothesis3: The primary 
challenge for LLMs in our 
tasks is the intrinsic difficulty 
of deep understanding, rather 
than the unfamiliar format.

Figure 3: Overview of the research questions answered in our study and their relationships.

visualization of the Gravity concept from textbooks, i.e., apple falling from a tree. This results in
1,200 paired grid examples for the 52 concepts, which form 400 3-shot instances.

Figure 2 presents two examples from this subtask that delve deeper into the concept of Gravity
compared to Figure 1. The top example demonstrates an application of the inverse square law of
gravity. The bottom one presents a parabola, linking the knowledge of gravity to inertia. These
examples demonstrate the difficulty of inferring their ground-truth labels solely by recalling the
concept of Gravity without high-level understanding skills.

Figure 2: Examples of input-output grids
labeled as Gravity, with increasing diffi-
culty levels.

The PHYSICO-ASSOCIATIVE Set Many instances in
the original ARC dataset can be solved via association
or analogy to physical concepts. Therefore, as a second
source of subtasks, we ask annotators to manually pick
input-output grids from ARC that can evoke their asso-
ciations to specific physical concepts and assign these
concepts as ground-truth labels. Different from PHYSICO-
CORE, we adopt an open-coding schema and allow the
inclusion of new concepts during annotation. The anno-
tators have reviewed 500 ARC instances to filter out the
required ones. After cross-validation to ensure agreement,
it results in a collection of 200 instances with physical
concept labels.

This relabelling approach covers additional 15 physical
concepts. The resulted subtasks have each example repre-
sent an abstract aspect of a concept with possible distracting information. Consequently, the resulted
task is more subjective hence more challenging than the PHYSICO-CORESet.

Creation of Classification Tasks We create four-choice tasks on the annotated data. Each instance
consists of 3 unique grid pairs as input examples. This results in 200 instances for PHYSICO-CORE
development set, 200 instances for PHYSICO-CORE test set, and 200 instances for ASSOCIATIVE
respectively. For each instance, we select three additional labels from our concept pool, along with the
ground-truth label, as candidate options. We manually avoid ambiguity during the negative sampling.
For example, if Gravity is the ground-truth, concepts like Magnet will not be sampled.

4 OVERVIEW OF OUR STUDIES

In the following sections, we conduct a series of studies on our PHYSICO tasks. Our studies are
organized into six Research Questions (RQs), through which we aim to answer three Hypotheses (Hs)
as shown in Figure 3. In summary, we propose to:
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(1) Examine the quantitative disparity in LLMs’ performances between low-level (RQ 1) and high-
level subtasks (RQ 3, RQ 4). This aims to highlight the existence of stochastic parrot phenomenon
in LLMs’ understanding of physical concepts.

(2) Assess the performance gap between LLMs (RQ 3, RQ 4) and humans on our high-level subtasks
(RQ 2). This aims to demonstrate that LLMs fall significantly short of human understanding.

(3) Investigate the shortcomings of in-context learning and supervised fine-tuning in improving LLMs
on our high-level subtasks (RQ 5, RQ 6). This aims to underscore the intrinsic limitations of SOTA
LLMs in achieving deep understanding.

Experimented Models We use commercial LLMs, including GPT-3.5 (gpt-3.5-turbo-1106), GPT-
4/4v (gpt-4-turbo-2024-04-09) and GPT-4o (gpt-4o-2024-05-13); and open-source LLMs, including
Llama-3 (Llama-3-8B-Instruct) (MetaAI, 2024) and Mistral (Mistral-7B-Instruct-v0.2) (Jiang
et al., 2023), InternVL-Chat-V1-5 (Chen et al., 2023; 2024)and LLaVA-NeXT-34B (Liu et al.,
2023a;b). We use the default inference configurations of the LLMs. Considering the randomness, we
run each experiment 3 times and compute the average and standard derivation.

5 VALIDATION ON LOW-LEVEL SUBTASKS

To illustrate the stochastic parrot phenomenon with PHYSICO, a necessary condition is to ensure the
LLMs can perform well on the low-level understanding subtasks, i.e., whether LLMs exhibit strong
skills of recalling and describing the definitions, core properties and representative examples of the
physical concepts in our tasks. That is:

RQ 1: Can LLMs perform well on low-level subtasks, i.e., understanding the definitions of physical
concepts in natural language?

To answer RQ 1, we evaluate the LLMs’ abilities to comprehend the definitions of these concepts and
generate their descriptions and examples in natural language, as defined in Section 3.2.1.

5.1 CONCEPT SELECTION SUBTASK

Settings We provide the standard definition of a concept based on Wikipedia with its synonyms
masked; then ask the LLMs to identify the concept, under the same four-choice setting throughout
the experiments. We evaluate the representative text-only LLMs and compute the accuracy.

(a) Mistral Llama-3 GPT-3.5 GPT-4

81.0±1.3 88.5±0.7 97.3±0.3 95.0±0.9

(b) InternVL LLaVA GPT-4v GPT-4o

66.3±7.7 66.7±5.8 93.7±0.9 93.7±0.5

Table 1: Accuracy on the text-based (a) and visual-
based (b) concept selection subtasks.

Results Table 1 shows that the closed-
source GPT (both text-based and visual-
based) models perform near perfect on
recognition of our physical concepts from
standard text-based definitions and from the
real-life images. Moreover, we observed
that open-source models make more mis-
takes compared with the closed-source mod-
els due to the smaller model size. For the
text-based models, both Mistral and Llama-3 are not as good as the closed-source models. Surpris-
ingly, both InternVL and LLaVA are much worse than the open-source GPT models. One possible
reason to this discrepancy is that our text-based concepts are from Wikipedia which is usually used as
a part of the training data for open-source LLMs. In contrast, some of our selected images for those
concepts may not be included in the training data of both InternVL and LLaVA which thereby can
not memorize those visual instances.

5.2 CONCEPT GENERATION SUBTASK

Settings This subtask evaluates the descriptions LLMs generate for a concept. The evaluation of a
text generation task is in general difficult. Moreover, in our scenario each concept have many different
ground-truth examples in its description, thus existing automatic metrics such as BLEU (Papineni
et al., 2002) and METEOR (Banerjee & Lavie, 2005) are not capable of accurately measuring
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the quality. Therefore, we rely on mainly human evaluation for this subtask. We also propose an
automatic metric via a self-play game for completeness in Appendix B.3.

Human evaluation metric We ask the annotators to evaluate the quality of the generated descrip-
tions. The evaluation uses binary scores: each description receives a score of 0 if it consists of any
factual error on the concept itself or any unfaithful examples,4 and a score of 1 otherwise.

Mistral Llama-3 GPT-3.5 GPT-4

92.6 100 100 100

Table 2: Human evaluations on the concept
generation subtask.

Results The results of automatic and human eval-
uations are shown in Table 2. According to human
evaluation, there are no factual errors in the generated
descriptions except for Mistral, confirming that our
selected concepts rely on basic and widely accepted
knowledge. Thought accurate, the open-source LLMs
sometimes include correct but uncommon facts, e.g., listing single-slit diffraction as an example of
Wave Interference. The additional results of the self-play test in Appendix B.3 further justify that all
LLMs can accurately recognize the physical concepts from the descriptions they wrote by themselves.
Combining the conclusions, it shows the LLMs can generate correct and sufficient information.

Remark We also ask the annotators of our PHYSICO-CORE to evaluate whether the core properties
they annotated are covered by the LLMs’ generated descriptions. This corresponds to measuring the
recall of the generated descriptions on core properties/examples of concepts from PHYSICO-CORE.
The recall rates for GPT-3.5 and GPT-4 are 85.0 and 90.0, respectively. Of course, there are some
exceptional examples from PHYSICO-CORE missed in the descriptions. One example is that the
LLMs fails to draw the connection between movable pulley and the Lever concept. Moreover, by
manually checking these missed properties and examples, we found that most of them can be recalled
if we query the LLMs in a second turn by prompting “Any more core properties or examples?”.
This confirms that the LLMs are aware of and are able to recall the core properties of concepts
covered by the PHYSICO-CORE, though some of them may not have the top conditional probabilities
of generation.

Conclusion LLMs understand the concepts covered by PHYSICO in natural language format.
Notably, we find that the properties and examples annotated in PHYSICO-CORE are within the LLMs’
knowledge and are highly likely to pop up when the corresponding physical concepts are queried.

6 EXPERIMENTS ON HIGH-LEVEL SUBTASKS

This section answers the research questions regarding our high-level understanding subtasks.

RQ 2: Can Humans understand the abstract representations?

First of all, we investigate the performance of humans who possess the knowledge required by
our PHYSICO. For each instance in our PHYSICO, we asked three independent annotators who
were not involved in our task design to perform the same classification task presented to the LLMs.
The results indicate that our tasks are largely solvable to people with a college-level education.
Specifically, on the PHYSICO-CORE tasks, humans achieved an accuracy rate higher than 90%. The
PHYSICO-ASSOCIATIVE tasks present greater challenges and subjectivity because the annotations
are personalized based on the annotators’ individual perspectives and experiences. Despite these
challenges, humans can still achieve a notable average accuracy of 77.8% in solving these tasks.

We conducted a detailed investigation into human performance on a subset of PHYSICO-
ASSOCIATIVE. Participants were asked to annotate instances where they believed none of the
four candidate answers adequately explained the inputs. The results revealed a 10.4% rate of disagree-
ment. On these disagreed-upon examples, human accuracy was 33.3%, explaining a major factor for
the human performance decline.

Conclusion Our study demonstrates that humans can perform the PHYSICO tasks quite well.

4For example, if the LLMs generated a wrong year in the description, it is not counted as incorrect physical knowledge.
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RQ 3: Can LLMs understand concepts in the abstract representations of the matrix format?

A straightforward solution for our PHYSICO is to represent the grid-formatted examples as matrices.
By representing the matrices with a token sequence, they can be integrated into an instruction prompt
for text-based LLMs, following existing prompting methods for ARC tasks (Acquaviva et al., 2022;
Xu et al., 2023; Wang et al., 2023; 2024). We use the prompt shown in Figure 7 to query the answers
from the evaluated LLMs.

Models Dev Test
CORE-Dev CORE-Test ASSOC.

Random 25.0 25.0 25.0

te
xt

-o
nl

y

GPT-3.5 24.4±0.8 26.5±2.5 30.0±2.5
GPT-4 28.2±2.3 41.3±1.3 38.3±1.2
GPT-4o 31.3±2.9 34.0±2.9 35.5±2.5
o1-pre∗ – 42.0∗ –

Mistral 26.0±1.4 21.5±0.3 23.2±0.4
Llama-3 27.3±0.6 23.5±2.5 21.7±2.0

m
ul

ti-
m

od
al GPT-4v 28.7±2.4 34.2±1.6 32.0±1.5

GPT-4o 45.2±2.3 52.3±0.8 36.5±0.4
+CoT 43.5±0.8 46.0±2.5 39.5±1.1

InternVL 26.9±4.1 26.3±1.6 24.8±1.3
LLaVA 28.5±1.5 26.2±1.1 24.7±3.2

Humans – 92.0±4.3 77.8±6.3

Table 3: Performance of different text-only and multi-
modal LLMs on our tasks. InternVL denotes InternVL-
Chat-V1-5 and LLaVA denotes LLaVA-NeXT-34B.
*The o1-preview model is evaluated on a partial subset,
where GPT-4 (text) and GPT-4o perform 44.0 and 56.0.

Results The top (text-only) section of Ta-
ble 3 presents the results. All the LLMs
perform poorly on the three sets of our
PHYSICO. Notably, GPT-3.5, Mistral, and
Llama-3 failed to show significant improve-
ment over random performance. Even for
the remarkable GPT-4, GPT-4o and GPT-
4v, their performance is not descent and
particularly there is a huge performance
gap between them and humans. In addition,
as our PHYSICO is essentially an inductive
reasoning task from grid-represented exam-
ples, we also tested the recent o1-preview
model with strong reasoning capability. Be-
cause o1-preview is very slow and espe-
cially has limited quota, we compare it on
a subset of 50 instances, on which its accu-
racy is only 42.0, showing no improvement
over GPT-4 (with accuracy of 44.0) and
GPT-4o (with accuracy of 56.0). The de-
tailed performance decomposition of GPT-
4, GPT-4o and o1-preview can be found in
Appendix D.

Conclusion Comparing the human performance in RQ 2 to the best-performing LLMs reveals
a huge gap. While these tasks are simple or trivial for humans, LLMs face substantial challenges,
indicating a lack of deep understanding.

When comparing LLMs’ performance on low-level natural language tasks in RQ 1 to high-level
abstract pattern understanding tasks, we observe significant declines. This highlights the presence
of the stochastic parrot phenomenon in LLMs. Our dataset also quantifies the severity of this
phenomenon. For example, while GPT-3.5 performs on par with GPT-4 on the low-level tasks, it
nearly drops to random guessing on our high-level tasks, revealing its tendency to act as a stochastic
parrot with the physical concepts in our dataset.

RQ 4: Can multimodal LLMs perform well on our tasks with visual input representations?

Next, we explore whether multi-modal LLMs can effectively solve our tasks when the input examples
are presented as visual images rather than matrices like in RQ 3. We use the prompt in Figure 8 to
query the answers from evaluated LLMs.

Results The bottom (multi-modal) section of Table 3 shows the results. Consistent with the
observations in RQ 3, a significant gap between the performance of LLMs and humans exists.

Notably, the recently introduced GPT-4o outperforms all other LLMs on PHYSICO-CORE by 10%
with visual inputs but lags behind GPT-4 on matrix inputs. This discrepancy may be due to GPT-
4o’s training on images that directly illustrate physical concepts, making it more adept at solving
problems like in Figure 1. However, this advantage does not extend to the more abstract problems in
PHYSICO-ASSOCIATIVE that require further knowledge application skills, highlighting the LLMs’
lack of deep understanding even with multi-modal training.

Finally, given that LLMs can generate high-quality descriptions of the concepts (see RQ 1), we adopt
a chain-of-thought (Wei et al., 2022) approach. It first asks the LLMs to describe each choice and
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then makes predictions. The results in Table 3 (+CoT) show limited improvement or performance
drop, further confirming the presence of the stochastic parrot phenomenon.

RQ 5: Is PHYSICO challenging mainly due to LLMs’ unfamiliarity with grid representations?
One might argue that the challenges of PHYSICO might be due to the uncommon nature of the task
format (especially the matrix-format inputs) encountered during LLM training, rather than a lack of
deep understanding. We disprove this hypothesis from two perspectives:

(1) We show that GPT-4o is actually familiar with the grid representations to some extent. Specif-
ically, we conducted a human study to examine GPT-4o’s fundamental visual comprehension
skills (Girshick et al., 2014; Long et al., 2015; He et al., 2017), including recognizing objects
from the grids, describing their colors and shapes, and identifying which objects have their color,
shape, or position changed from input to output. These tasks correspond to the fundamental computer
vision tasks of segmentation and object detection.

We sampled 60 examples of grid pairs from our dataset and had 3 annotators determine if GPT-4o
provides correct answers. For each object, the answer is counted as correct only if the shape, color,
and positions are all answered correctly. Our results show an accuracy of 86.7%, which is significantly
better compared to the accuracy on our high-level tasks. This confirms that GPT-4o is indeed familiar
with the grid inputs but still cannot handle our PHYSICO tasks effectively.

(2) We show that making the LLMs more familiar with the grid representations does not lead to
significant improvement. Specifically, we conduct the following experiments with text-only LLMs:

Models CORE ASSOC.

GPT-4 41.3±1.3 39.0±0.6
w/ ICL-3-shot 39.5±1.6 36.2±1.7
w/ ICL-9-shot 32.8±1.0 39.0±1.6

Mistral 21.5±0.3 23.2±0.4
w/ FT on syn-tasks 20.9±0.7 22.5±0.5
w/ FT on ARC 20.9±0.8 25.5±0.9

Llama-3 23.5±2.5 21.7±2.0
w/ FT on syn-tasks 23.0±1.1 23.2±2.7
w/ FT on ARC 22.2±1.6 22.4±1.2

Table 4: Performance of LLMs with in-context
learning or fine-tuning on grid-format data.

• ICL on other concepts. Compare the perfor-
mance of zero-shot GPT-4 with GPT-4 using
in-context learning (ICL) on few-shot examples
from concepts other than the assessed one.

• FT on synthetic matrix data. Compare the open-
source LLMs before and after fine-tuning on a
large amount of matrix-input data (Appendix E)

• FT on the ARC task. Compare the open-
source LLMs before and after fine-tuning on
the original ARC (Chollet, 2019) task, which
ensures that all inputs from the PHYSICO-
ASSOCIATIVE examples have been seen during
model training.

Despite that both the ICL and SFT approaches
make LLMs more familiar with matrix-format inputs, neither approach significantly improves the
results as shown in Table 4.

Conclusion GPT-4o is somehow familiar with the grid format and further enhancing the familiarity
of grid format for LLMs is not the key to addressing our challenges.

RQ 6: How much can LLMs benefit from training on labeled data?

Many tasks that challenge LLMs can see significant performance boosts through ICL or SFT on
labeled data (Hessel et al., 2023; Yu et al., 2023; Berglund et al., 2023). When such improvements
are observed, it suggests that LLMs inherently possess the necessary skills to excel in their tasks,
needing only minimal training effort.

In this study, we demonstrate that this is not the case for our tasks, where light-weight training on
labeled data does not improve LLM performance for our tasks. Given the current lack of large-scale
training data for our purpose, we conduct an extreme case study: models learn from the same concepts
in PHYSICO-CORE and are tested on the same concepts in PHYSICO-ASSOCIATIVE. To this end, we
select the instances that consists of at least two choices that exist in the PHYSICO-CORE, leaving 80
examples. We conduct the following experiments on this subset to answer RQ 6:
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GPT-4 42.9±2.4 GPT-4o 40.4±2.1 Llama-3 22.1±2.8
+ ICL on CORE 40.0±1.0 + ICL on CORE 37.1±2.6 + SFT on CORE 20.9±2.7

Table 5: Accuracy on the subset of ASSOCIATIVE subtask that has overlapped concepts with CORE.

• ICL on the same concepts. Compare the zero-shot GPT-4/4o and GPT-4/4o with ICL5 on examples
for the same concepts from PHYSICO-CORE. Specifically, for each instance, we sample 9 examples
from PHYSICO-CORE with their labels among the choices of the instance.

• SFT on the CORE set. Compare the open-source LLMs before and after fine-tuning on labeled
data from PHYSICO-CORE.

Results Table 5 shows that ICL and SFT on the labeled examples of the same concepts lead to a
consistent, though not severe, drop in performance. The results suggest that the models have become
overfitted to the "clean" examples from the PHYSICO-CORE. They appear to have learned superficial
correlations from the demonstrations that do not generalize well, providing further evidence of the
stochastic parrot phenomenon. The difficulty of generalization within the same concepts indicates the
challenges of our tasks to the supervised fine-tuning paradigm.

Conclusion Together with the results for RQ 5 and RQ 6, it suggests that the low performance of
LLMs is not likely to be improved from prompting techniques alone. There exists intrinsic inefficiency
in the pre-training of LLMs, which results in the lack of necessary skills for deep understanding.

7 RELATED WORK

Stochastic Parrots on LLMs The pioneer study by (Bender & Koller, 2020) questioned the
understanding ability of large models; and Bender et al. (2021) first introduced the terminology of
stochastic parrot. The concept of stochastic parrot has received great attention, leading to a surge of
studies on this topic. According to Google Scholar, the term “stochastic parrot” appears in the titles
of dozens of papers from diverse research fields (Borji, 2023; Li, 2023; Duan et al., 2024; Henrique
et al., 2023). However, although the concept of stochastic parrots in LLMs is widely accepted and
recognized, to the best of our knowledge, there is a lack of quantitative experiments to precisely
verify this viewpoint. This gap directly motivates our work.

Abstract Reasoning Challenge Abstract reasoning challenge (ARC) aims to examine the inductive
reasoning ability in a few-shot scenario (Chollet, 2019) and it has been used as a remarkable testbed
to measure the intelligence of LLMs. Recently, many research efforts have been made on improving
the performance of LLMs on ARC benchmark (Tan & Motani, 2023; Wang et al., 2023; Xu et al.,
2023; Mirchandani et al., 2023; Wang et al., 2024; Huang et al., 2024). We draw inspiration from
ARC by utilizing input-output grids as abstract representations in our task design. However, our
task is significantly different from the ARC-style work — our high-level understanding task focuses
on comprehending the transformation rules from inputs to outputs and relating them to physical
concepts, and is designed to assess the stochastic parrot phenomenon.

Challenging Tasks towards LLMs’ Understanding Extensive recent efforts have been made on
designing tasks that challenge the understanding abilities of LLMs (Chakrabarty et al., 2022; Tong
et al., 2024; Shapira et al., 2023; Hessel et al., 2023; Donadel et al., 2024; Li et al., 2024). For
example, Hessel et al. (2023) proposed a humor understanding task, revealing a large performance
gap between LLMs and humans. As a by-product, our PHYSICO challenges the understanding
capabilities of LLMs, relating it to the above studies. However, we make primary contribution
to provide an quantitative experiment to verify stochastic parrots in LLMs via controllably paired
low-level and high-level tasks.

5For GPT-4o, we implement ICL with multi-turn dialogues. Each shot in the demonstration is provided in
one turn which asks the GPT-4o to explain the image.
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8 CONCLUSION

We introduce PHYSICO, a novel task to assess machines’ understanding of physical concepts at
different levels. Our experiments reveal that: 1) LLMs lag significantly behind humans on PHYSICO,
indicating a lack of deep understanding of the covered concepts; 2) LLMs exhibit the stochastic parrot
phenomenon, as they excel at low-level remembering tasks but struggle with high-level understanding
tasks; 3) LLMs’ poor performance stems from its intrinsic deficiencies, as neither in-context learning
nor fine-tuning improves their results.
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A DETAILS OF THE INCLUDED CONCEPTS IN OUR PHYSICO

Concepts in PHYSICO-CORE The concepts in PHYSICO-CORE are basic physical concepts that
we manually design problems for. The development set covers 25 concepts and the test set covers 27
concepts as follows:

atmospheric pressure 12 energe conservation 10
elastic force 10 friction 9
photoelectric effect 8 heat conduction 8
doppler effect 8 electromagnetic wave 8
melting 8 vaporization 8

fluid pressure 8 thermal expansion and contraction 8
Brownian motion 8 splashing 8
oscillation 8 relativity 8
lighting 8 lifting 8
force composition 8 pulley 8

inclined plane 8 Bernoulli effect 7
fictitious force 6 siphon 6
resonance 4

Table 6: Concepts and their corresponding number of instances in PHYSICO-CORE-Dev.

reference frame 12 gravity 10
reflection 10 refraction 10
light imaging 10 communicating vessels 10
cut 10 laser 10
surface tension 10 move 10

buoyancy 10 acceleration 10
inertia 10 electricity 10
repulsive force 8 wave 8
lever 6 optical filters 6
compression 4 diffuse reflection of light 4

wave interference 4 diffusion 4
vortex 4 expansion 4
nuclear fission 2 nuclear fusion 2
diffraction of waves 2

Table 7: Concepts and their corresponding number of instances in PHYSICO-CORE-Test.

All Concepts in PHYSICO The following table summarized all the concepts from both PHYSICO-
CORE and PHYSICO-ASSOCIATIVE:

B DETAILS OF ANALYSIS METHODS IN RQ 1

B.1 MASKING OF TEXTUAL DESCRIPTIONS

This experiment follows the setting in the “Physical Concept Selection Subtask” in section 3.2.1. The
definitions of the corresponding phenomena were extracted from Wikipedia as well as generated
by GPT-3.5 and GPT-4. To maintain consistency, the terms representing concepts were masked
as [PHENOMENON] while relevant terms are masked as [MASK]. For instance, “interference” which
corresponds to the phenomenon “wave interference” was masked as [PHENOMENON]. In contrast,
“Newton’s first law of motion” which corresponds to the phenomenon “inertia” was masked as [MASK].

An example of the masked description can be found in Figure 6.
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laser 30 mirror 30
wave 21 reference frame 20
gravity 19 move 18
reflection 15 zoom in 15
compression 14 magnet 14

expansion 13 explosion 11
refraction 10 light imaging 10
communicating vessels 10 cut 10
surface tension 10 buoyancy 10
acceleration 10 inertia 10

electricity 10 rotation 10
repulsive force 8 diffusion 8
optical filters 7 water ripples 7
long exposure 7 lever 6
wave interference 5 vortex 5

wetting 5 diffuse reflection of light 4
nuclear fission 3 nuclear fusion 3
zoom out 3 diffraction of waves 2
projection 2 polarization of light 1
chemical bond 1 squeeze 1

lumination 1 vacuum 1

Table 8: Concepts and their corresponding number of instances in PHYSICO-ASSOCIATIVE.

B.2 PROMPTS USED FOR DESCRIPTION GENERATION AND CLASSIFICATION

Figure 4 and 5 include the prompts used for generation and classification respectively.

[SYSTEM]
You are an expert in physics. You task is to provide a comprehensive definition of a given physical
↪→ concept or phenomenon, with the key properties or key examples of the concept included.

[USER]
Please provide me with the definition of the physical concept "{{ CONCEPT }}", with the key properties
↪→ or key examples included.

Figure 4: The prompt template used for generating descriptions of physical concepts (denoted as the
variable CONCEPT) in RQ 1.

[SYSTEM]
You will be playing a game:
You are given a definition of a physical phenonmenon, where the names of the phenonmenon are masked.
Your task is to guess which phenonmenon the definiton refers to.
Please select the most close answer from the provided options.

[USER]
Here is a definition of a physical phenonmenon, where the names of the phenonmenon are masked:

[Definition]

{{ MASKED DESCRIPTION }}

Please guess which phenonmenon the definiton refers to. You should choose your answer from the
↪→ following options: {{ CANDIDATE ANSWERS }}

Your response should end with your choice of answer.

Figure 5: The prompt template used for guessing the referred physical concept from four candidates
(denoted as the variable CANDIDATE ANSWERS) from the natural language descriptions (denoted as the
variable MASKED DESCRIPTION) in RQ 1.
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[PHENOMENON] is a fundamental concept in physics that describes the resistance of any physical object
↪→ to a change in its state of motion. This concept is a central part of [MASK], often referred to as
↪→ the law of [PHENOMENON]. According to this law, an object at rest will stay at rest, and an object
↪→ in motion will continue to move at a constant velocity, unless acted upon by a net external force.
↪→ Here are the key properties and examples of [PHENOMENON]:

### Key Properties:
1. **Dependence on Mass**: The [PHENOMENON] of an object is directly proportional to its mass. The
↪→ greater the mass of an object, the greater its [PHENOMENON], and hence, the more force it requires
↪→ to change its state of motion.

2. **Resistance to Acceleration**: [PHENOMENON] is essentially the resistance of an object to any
↪→ change in its velocity, which includes changes in the speed or direction of the object's motion.

3. **Universal Applicability**: [PHENOMENON] applies to all objects with mass, whether they are
↪→ microscopic or astronomical in scale.

4. **Independence from External Factors**: The [PHENOMENON] of an object is inherent and does not
↪→ depend on external conditions such as the environment, temperature, or pressure.

### Key Examples:
1. **A Parked Car**: A parked car will not move unless a force is applied to it. Once moving, it will
↪→ continue to move at a constant speed in a straight line unless forces like friction or brakes are
↪→ applied to change its state.

2. **Astronauts and Objects in Space**: In the vacuum of space, where there is little to no external
↪→ force, an astronaut or any other object will continue moving in the same direction and at the same
↪→ speed until acted upon by another force. This is an example of [PHENOMENON] in a microgravity
↪→ environment.

3. **Seatbelts in Vehicles**: When a car suddenly stops, the passengers inside tend to lurch forward.
↪→ This is due to the [PHENOMENON] of their bodies; their bodies were in motion and tend to remain in
↪→ motion despite the car stopping. Seatbelts provide the necessary force to counteract this [
↪→ PHENOMENON] and keep the passengers safe.

4. **Tablecloth Trick**: A classic example demonstrating [PHENOMENON] is the tablecloth trick, where a
↪→ quick pull of the tablecloth can leave dishes undisturbed on a table. The [PHENOMENON] of the dishes
↪→ (their tendency to resist changes in motion) allows them to remain relatively still while the
↪→ tablecloth is quickly pulled from under them.

Understanding [PHENOMENON] is crucial for analyzing the motion of objects in various physical contexts,
↪→ from everyday life to complex scientific scenarios. It is a cornerstone in the study of dynamics
↪→ and plays a critical role in engineering, automotive safety, aerospace technology, and many other
↪→ fields.

Figure 6: An example of our masked description for the concept inertia.

B.3 ADDITIONAL RESULTS ON THE SELF-PLAY GAME

Automatic evaluation of a text generation task is in general difficult. Especially, in our scenario
each concept have many different ground-truth examples in its description, thus existing automatic
metrics such as BLEU (Papineni et al., 2002) and METEOR (Banerjee & Lavie, 2005) are not capable
of accurately measuring the quality. Therefore, we propose an alternative automatic metric via a
self-play game for this subtask:

For each generated description of a concept, we mask the synonyms of the concept in it as in the
previous selection subtask, and ask the same LLM to identify the concept being described from four
options. This metric evaluates the quality of LLMs’ generated concept descriptions in an objective
manner.

Mistral Llama-3 GPT-3.5 GPT-4

Human 92.6 100 100 100

SP 89.2±1.6 91.9±0.6 96.0±0.4 99.8±0.2

Table 9: Evaluations on the concept generation subtask, with
metrics of Self-Play success and Human evaluation.

Results The results of automatic
evaluation via self-play are shown in
Table 9 together with the human eval-
uation results. In the self-play test, all
LLMs can accurately recognize the
physical concepts from the descrip-
tions they wrote by themselves. Com-
bined with the conclusion from human
evaluation, it shows the LLMs can generate correct and sufficient information.
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[SYSTEM]
You will be playing a game:
You are given several examples. Each example consists of an``input grid'' and an ``output grid'' of
↪→ numbers from 0-9, where each number corresponds to a color.
Your task if try to find the common patterns from the examples and abstract the meanings of the
↪→ patterns in the physical or mathematics world.
Based on the recognized meaning, please select the most close description of the common pattern from
↪→ the provided options.

[USER]
Lets play a game where you are transforming an input grid of numbers into an output grid of numbers.

The numbers represent different colors:
0 = black
1 = blue
2 = red
3 = green
4 = yellow
5 = gray
6 = magenta
7 = orange
8 = cyan
9 = brown

Here are examples of input grids and its corresponding output grids:

Example input grid:
{{ INPUT GRID1 }}

Example output grid:
{{ OUTPUT GRID1 }}

Example input grid:
{{ INPUT GRID2 }}

Example output grid:
{{ OUTPUT GRID2 }}

Example input grid:
{{ INPUT GRID3 }}

Example output grid:
{{ OUTPUT GRID3 }}

Please first try to find the common patterns from the input-output pairs, then answer the following
↪→ question:

What meanings in the physical or mathematics world can be abstracted from the patterns? Please choose
↪→ your answer from the following options:
{{ CANDIDATE ANSWERS }}

Your response should end with your choice of answer.

Figure 7: The prompt template used in RQ 3. The pair of an INPUT GRID and an OUTPUT GRID consists
of one example of a physical phenomenon in matrix format.

C DETAILS OF THE METHODS USED IN RQ 3 AND RQ 4

We use the prompt template in Figure 7 for experiments on text-only LLMs (RQ 3); and the template
in Figure 8 for multi-modal LLMs (RQ 4).

D PERFORMANCE DECOMPOSITION IN RQ 3 AND RQ 4

Table 10 provides a performance decomposition of text-based GPT-4, text-based o1-preview and
multi-modal GPT-4o on our PHYSICO-CORE-Test set. Because the rate limit of o1-preview, we
conduct experiment on a subset of 50 instances. The result shows that o1-preview does not show
superior results compared to the other two LLMs.
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{{ UPLOADED IMAGE }}
[USER]
In the given image, there are two columns of matrices with elements represented by different colors.
The left column represents the inputs, and the right column represents the corresponding outputs.
For each row in the image, the output is derived from the input using the same transformation rule,
which corresponds to a real-world physical concept.

Your task is to identify the physical concept demonstrated in this image from the following options:

{{ CANDIDATE ANSWERS }}

Please select and provide the correct option that matches the transformation shown in the image.
Your response should end with your choice of answer.

Figure 8: The prompt template used in RQ 4. UPLOADED IMAGE is an image consists of three or more
examples like in Figure 2.

Concept GPT-4 (text) GPT-4o (visual) o1-preview (text)

gravity 60.0±8.2 33.3±4.7 50.0
compression 50.0±20.4 50.0±0.0 0.0
diffuse reflection of light 50.0±0.0 33.3±11.8 25.0
lever 0.0±0.0 50.0±0.0 16.7
wave interference 83.3±11.8 100.0±0.0 100.0
spectrum of light and optical filters 66.7±0.0 88.9±15.7 66.7
surface tension 43.3±17.0 50.0±8.2 30.0
nuclear fission 16.7±23.6 100.0±0.0 100.0
nuclear fusion 0.0±0.0 100.0±0.0 50.0
communicating vessels 3.3±4.7 3.3±4.7 0.0
diffraction of waves 83.3±23.6 100.0±0.0 –
reflection 86.7±4.7 43.3±4.7 –
refraction 20.0±8.2 83.3±4.7 –
light imaging 10.0±0.0 0.0±0.0 –
cut 90.0±0.0 73.3±4.7 –
laser 46.7±12.5 53.3±4.7 –
move 96.7±4.7 86.7±4.7 –
buoyancy 43.3±12.5 100.0±0.0 –
acceleration 10.0±8.2 73.3±12.5 –
inertia 80.0±8.2 6.7±4.7 –
electricity 16.7±4.7 53.3±9.4 –
reference frame 27.8±3.9 13.9±3.9 –
repulsive force 20.8±5.9 20.8±11.8 –
diffusion 8.3±11.8 100.0±0.0 –
vortex 0.0±0.0 100.0±0.0 –
expansion 50.0±0.0 75.0±0.0 –
wave 16.7±15.6 33.3±5.9 –

Table 10: Performance decomposition to concepts on PHYSICO-CORE-Test.

E CONSTRUCTION OF SYNTHETIC TRAINING DATA USED IN RQ 5

We investigate whether fine-tuning LLMs on matrix property-related questions could improve their
performances on our tasks. Specifically, we generate 3000 extra input-output grid pairs calculate the
size, transpose, and locations of the subgrid’s corner elements for these matrices as ground truths.
Furthermore, since correctly recognizing the location of the subgrid may contribute more to finish the
Move and Copy tasks compared to other properties, we create additional ground truths only with the
gold locations of the subgrid’s corner elements.

F HYPERPARAMETERS OF SUPERVISED FINE-TUNING IN RQ 5 AND RQ 6

For all the fine-tuning experiments, we use LoRA (Hu et al., 2021). We fine-tune each model for 3
epochs with a batch size of 4 on a single machine with 8 A100 GPUs. The dimension of LoRA’s
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attention layer is set to 64, and the α and dropout rates are set to 16 and 0.1, respectively. The learning
rate and weight decay are set to 2e-4 and 0.001, respectively. The hyperparameters are selected
according to the development performance on the synthetic matrix data in Appendix E.
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